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Vorticity waves are wave-like motions occurring in various types of shear flows. We 
study the dynamics of these motions in alongshore shear currents in situations where it 
can be described within weakly nonlinear asymptotic theory. The principal mechanism 
of vorticity waves can be interpreted as potential vorticity conservation with the 
background vorticity gradient provided both by the mean current shear and the 
variation of depth. Under the assumption that the mean potential vorticity distibution 
is monotonic in the cross-shore direction, the nonlinear stage of the dynamics of 
weakly nonlinear vorticity waves, long in comparison with the current cross-shore 
scale, is found to be governed by an evolution equation of the generalized Benjamin- 
Ono type. The dispersive terms are given by an integro-differential operator with the 
kernel determined by the large-scale cross-shore depth and current dependence. The 
derived equations form a wide new class of nonlinear evolution equations. They all 
tend to the Benjamin-Ono equation in the short-wave limit, while in the long-wave 
limit their asymptotics depend on the specific form of the depth and current profiles. 
For a particular family of model bottom profiles the equations are ‘intermediate’ 
between Benjamin-Ono and Korteweg-de Vries equations, but are distinct from the 
Joseph intermediate equation. Solitary-wave solutions to the equations for these depth 
profiles are found to decay exponentially. Taking into account coastline inhomogeneity 
or/and alongshore depth variations adds a linear forcing term to the evolution 
equation, thus providing an effective generation mechanism for vorticity waves. 

1. Introduction 
Vorticity waves are wave-like motions occurring in various types of shear flows and 

characterized by one common feature : the restoring force providing oscillations of 
the fluid particles and through that causing the motions under consideration is due 
to the gradient of vorticity of the basic flow (see Lin 1955). While the evolution of 
infinitesimal perturbations in shear flows can always be naturally described in terms 
of wave-like normal modes (e.g. Lin 1955; Drazin & Reid 19Sl), finite-amplitude 
disturbances might be treated as waves only under some special conditions. One of 
the most typical difficulties lies in the fact that very often instabilities are so strong 
(say in shear flows with inflection points) that the description of the perturbation 
evolution in terms of weakly nonlinear theories makes no particular sense. To describe 
strongly nonlinear motions it is sometimes more natural to use a vortex dynamics 
description (see e.g. Saffman 1993) but most often no convenient description exists. 
Another typical obstacle occurring even for the weakly nonlinear motions is caused 
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by the singular character of the linear eigenmodes of a continuous spectrum, with 
the straightforward perturbation approach no longer working as all the products due 
to nonlinear terms diverge. To our knowledge no universal cure for this problem has 
yet been developed. Thus the physical situations where a self-consistent analysis of 
weakly nonlinear vorticity waves is possible, their dynamics is non-trivial and these 
waves are the dominant modes of motions, are of special interest. 

The evolution of vorticity waves of finite amplitude satisfying the conditions for- 
mulated above has been studied in very different contexts, for example as secondary 
two-dimensional structures in Blasius boundary layers (e.g. Kachanov, Ryzhov & 
Smith 1993) and in plane Poiseuille flow (Pedley & Stephanoff 1985) and as three- 
dimensional waves in boundary layers in water on air-water interface (Shrira 1989). 
We note that, though being weakly nonlinear, vorticity waves may have a shape 
essentially distinct from sinusoidal. The geophysical situations when these waves are 
the dominating type of motion merit special consideration. 

The main questions we address in this paper might be formulated as follows: Is 
there a place for motions of this type in the coastal zone? If yes, in what geophysical 
situations can they occur? What equations govern their evolution and what physics lie 
behind the equations? We are particularly interested in understanding the interplay 
of nonlinear and dispersive effects which commonly provide most of the richness of 
nonlinear wave dynamics. 

In recent years the term ‘vorticity waves’ in the context of geophysical fluid dy- 
namics was applied mainly to the nearshore motions first found in the ‘SUPERDUCK’ 

field experiment by Oltman-Shay, Howd & Birkemeier (1989). These relatively small- 
scale motions occur in the surf-zone alongshore shear currents which produce a 
vorticity field with non-monotonic cross-shelf dependence. They were interpreted as 
the linearly unstable modes within the linear Rayleigh-type boundary-value prob- 
lem by Bowen & Holman (1989) (see also more recent works by Dodd 1994 and 
Falques & Iranzo 1994 and the references therein for the extension to realistic models 
of the mean current and bottom profile with bottom friction taken into account). The 
basic potential vorticity distribution must be non-monotonic for the linear instability 
to appear. However a weakly nonlinear analysis of Shrira, Voronovich & Kozhelupova 
(1996) showed that an even more intense mechanism of vorticity wave generation, that 
of explosive instability, is likely to occur in such currents. This makes questionable 
the possibility of an adequate description in terms of waves of the later stages of their 
evolution, within either linear or weakly nonlinear wave theory. One may expect a 
description in terms of interacting vortices to be more promising. In the present study 
we exclude motions of such a type from consideration and concentrate upon ‘waves’. 

It should be mentioned here again that the term ‘vorticity waves’ is used in a 
general sense for all wave-like perturbations of the alongshore currents provided by 
the potential vorticity conservation mechanism, not for the linearly unstable modes 
alone. It is to be stressed that the neutral modes whose nonlinear evolution is 
considered in the present paper, as well as weakly decaying modes, can be of interest 
and importance for coastal-zone dynamics. We shall study vorticity waves in the 
general sense specified above in the coastal zone, focusing our attention upon the 
motions a priori expected to be properly described as waves within weakly nonlinear 
theory, i.e. we investigate the evolution of finite-amplitude wave-like perturbations to 
alongshore currents. This means in particular that we confine ourselves to considering 
monotonic potential vorticity profiles. The motions under study may differ in scales 
greatly although they remain relatively small-scale ones not to be strongly influenced 
by Coriolis forces. We mention here some examples of relevant geophysical contexts : 
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(a )  strong Western boundary currents sometimes come very close to the shore 

( h )  tidal or other currents in straits are often characterized by very narrow (in 

( c )  currents produced by breaking waves near a wall or very steep shore. 
The paper is organized as follows. We start in $ 2  with the standard shallow-water 

equations and retaining the leading-order terms in the Froude number arrive at a 
version of the vorticity equation. The boundary problem comprising this nonlinear 
equation and the zero-flux boundary conditions on the shore and at infinity forms the 
mathematical framework of our study. Confining ourselves to consideration of the 
nearshore with a monotonic distribution of the basic potential vorticity and assuming 
the motions under study to be: ( i )  long in comparison with characteristic scales of 
the current cross-shore variation and the ‘fast’ depth scale ; (ii) weakly nonlinear; we 
employ the multiple-scale method to simplify our nonlinear boundary problem. 

In $ 3  an asymptotic technique very similar to that used in a different context 
by Shrira (1989) is applied to derive a nonlinear evolution equation. The equation 
takes into account at the leading-order nonlinearity and dispersion, the specific 
form of the pseudo-differential dispersion operator being determined by the ‘slow’ 
cross-shore depth and/or current dependence. Thus it is better to speak about a 
‘class of evolution equations’ with specific equations corresponding to different depth 
and current profiles. For a family of model cross-shore depth dependencies the 
derived equations are found to be ‘intermediate’ between classical Benjamin-Ono and 
Korteweg-de Vries (KdV) equations. 

In 9: 4 some universal asymptotic properties of solitary-wave solutions are found 
analytically for the ‘intermediate equations : the ‘tails’ of solitary waves decay ex- 
ponentially like those of KdV solitons. The complete solitary-wave profiles, as an 
example, for a particular class of depth profiles, namely exponential, are obtained 
numerically. 

In $ 5  we are concerned with the influence of ‘weak‘ Earths rotation: the Coriolis 
force is assumed to be small, but not negligible as in $ 3, in comparison with the mean 
vorticity forces. The evolution equation, which takes the Coriolis effect into account, 
and so differing from that of the previous section in the coefficients and the specific 
form of the kernel in the dispersion operator, has been derived. The linear resonance 
between vorticity waves and continental shelf waves is briefly discussed. When there 
is resonance the dispersion operator becomes singular and the evolution equation 
loses its validity. 

In $ 6  we study the generation of vorticity waves by an uneven coastline, aiming 
to estimate the effectiveness of this mechanism. This part of our work is strongly 
influenced by the work of Grimshaw (1987), where resonant forcing of barotropic 
continental shelf waves was studied under similar assumptions. It is worth mentioning, 
however, that though both vorticity and continental-shelf waves are driven by the 
forces due to the gradient of potential vorticity and in this sense are similar to each 
other, still they have essential differencies in their physics. Continental-shelf waves 
exist mainly due to the gradient in the potential vorticity field created by the Earth’s 
rotation and varying depth of the fluid. They are only hfluenced by the currents and 
can exist in a rotating fluid without currents. On the other hand, vorticity waves 
appear owing to a potential vorticity field supplied by a shear current, and they can 
exist even in a non-rotating fluid of constant depth. The presence of a critical layer is 
also essential for the waves we study, while Grimshaw (1987) excluded situations with 
critical layers from consideration. To understand better the nature of the difference 

producing a narrow zone of strong vorticity gradient; 

comparison to the strait width) boundary layers (e.g. Defant 1961, p.189); 
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between these two types of motions it is helpful to consider first the simplest piecewise- 
constant model of the nearshore with a single jump in the profile of potential vorticity 
due to a shear current. Then one would obtain all the continental-shelf wave modes 
slightly affected by the current plus an additional wave on the vorticity jump. This 
additional mode is our vorticity wave. If the jump is smoothed the discrete spectrum 
mode on this jump disappears. Thus from the mathematical point of view the vorticity 
waves are the intermediate asymptotics of the packets of continous spectrum modes 
(see Shrira 1989), while continental-shelf waves are the true discrete spectrum modes. 

In $ 7  we briefly summarize the main results of the study and discuss the key 
assumptions, limitations and perspectives of the approaches developed. 

2. Basic equations and scaling 
We shall consider finite-amplitude vorticity wave dynamics in the coordinate frame 

with the axes x and y directed offshore and alongshore respectively. Being interested 
in studies of motions with periods much smaller than the Coriolis time scale? we first 
neglect the influence of the Earth's rotation on the vorticity wave dynamics. The total 
velocity field is assumed to consist of the mean alongshore current with a cross-shore 
shear and perturbations 

u* = {u(x ,  Y ,  t) ,  V ( x )  + 4x9 Y ,  t ) } ,  (2.1) 
where V ( x )  represents the mean steady current and u = {u,u} the perturbed velocity 
field. The basic equations governing nearshore vorticity wave dynamics are then the 
standard shallow-water equations 

ut + vu, = - g L  - (uu, + vu,), ( 2 . 2 ~ )  

vt + vu, + uv, = -g[, - (uv, + vv,), (2.2b) 
(2.2c) 

Here [ is the free-surface elevation, g is gravity acceleration, h = h(x)  is the depth 
presumed to be alongshore uniform. 

L ' z  + VL'y + [(L' + h)uIx + [(i + h)oly = 0. 

The scalings 

where VO is the typical magnitude of the mean current velocity, say its maximum 
nearshore value, d is the typical mean current cross-shore variability scale, L is the 
typical wavelength, ho is the typical depth within the current domain (the primed 
quantities are non-dimensional), yield the non-dimensional equations of motion in 
the form 

ut + vu, = - E K 2 ( ,  - (uu, + V U J ,  ( 2 . 4 ~ )  

vt + vu, + uv, = -i, - (uu, + uv,), (2.4b) 

(hu), + (hv), = 0. ( 2 . 4 ~ )  
t Typically the Coriolis period is one or two orders larger and thus the Coriolis effects could as 

a rule be neglected. The situations where these effects are comparable with some other small factors 
and therefore should be taken into account will be considered below in 8 5. 
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Here the parameter E represents the ratio of the cross- and alongshore spatial scales 

d 
L 

f = -  (2.5) 

and the primes have been dropped for convenience. The terms containing surface 
elevation, which are of the second order in the Froude number 9 = Vo/ (gho)1'2, were 
neglected in the conservation of mass relation ( 2 . 4 ~ )  owing to the smallness of 9. The 
validity of this assumption?, as well as neglect of the Coriolis effect in comparison 
with the inertial terms involving the mean alongshore current, for the description of 
vorticity wave dynamics can be easily checked. 

Equation ( 2 . 4 ~ )  allows us to introduce a stream function ~ ( x ,  y ,  t )  such that 

hu = -wy, hv = lpu. (2.6) 
Cross-differentiating (2.4u, b )  to remove the surface elevation and substituting the 
stream function (2.6) into the result one easily gets the nonlinear vorticity equation 

W X Y ,  Y j  Y x  + -  - h h h ( h ) , )  

The appropriate boundary conditions for this problem are the requirements of zero 
mass fluxes through the coastline x = x ~ ( y )  and at infinity: 

wl. + (hV + y-lY) d,xo = 0 at x = xo(y), ( 2 . 8 ~ )  

y, = 0 as x -P cc. (2.8b) 
For a straight coast, xo(y) without loss of generality can be put equal to zero. Unless 
otherwise stated we shall focus our attention on this case. The essentially nonlinear 
boundary-value problem (2.7), (2.8) has no regular way of being treated. For an 
arbitrary shore-zone profile and current structure a few a przori bounds can be derived 
in a regular manner for the complex phase speed in the linearized problem only, these 
being straightforward$ generalizations of the classical results of the hydrodynamic 
stability theory (see e.g. Drazin & Reid 1981) based on the Rayleigh equation. To 
get a quantitative description rather than just bounds the authors of all the previous 
works, even within the linearized problem, were forced to deal either with specific 
piecewise models or to use a numerical treatment. 

We aim to study analytically the nonlinear dynamics of vorticity waves. The specific 
goals are to simplify the description of weakly nonlinear motions by making use of 
the relevant small parameters, to study the role of forcing by shore and bottom 
inhomogeneities and of 'slow' Earth rotation on their dynamics. So we confine 
our attention to consideration of the shore zones characterized by the monotonic 
cross-shore distribution of the mean potential vorticity, i.e. 

( X ' ) ' # O  v x .  

This condition means that the potential vorticity profile has no extremal points, is 

T It is often called the non-divergent approximation and is widely used in geophysical hydrody- 
namics (e.g. Mei 1993). 

$ In particular, the bounds on the instability characteristics can be deduced from the results by 
Collings & Grimshaw (1984) just by putting Coriolis parameter equal to zero. 
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FIGURE 1. Geometry and notation. 

analogous to that of the absence of inflection points for the Rayleigh equation and is 
imposed to ensure linear stability and to make the technique similar to that developed 
in Shrira (1989), Grimshaw (1987) applicable. Meanwhile, it does not imply that the 
mean current velocity and the depth profile be separately monotonic. 

For definiteness we consider mainly the mean current equating to zero at the coast 
and rapidly tending to some constant value V, as the cross-shore coordinate x tends 
to infinity (figure l), the exact sense of the world ‘rapidly’ being defined below. While 
the characteristic cross-shore scale of the current is designated d, the depth profile is 
considered as having two cross-shore scales: ‘fast’, of order d and ‘slow’, the much 
greater scale dslow, i.e. h(x )  is taken in the form 

(2.10) 
L h(x)  = H ( x ) D ( p f x )  where p = -. 

dslow 

The two-scale mean currents will be considered below as well. 
Perturbations of the mean flow are assumed to be small but finite and a corre- 

sponding nonlinearity parameter 6, is defined as the ratio of the typical value of the 
alongshore velocity perturbation v to the maximal mean current velocity V,: 

0 
f, = -. 

v m  
(2.11) 

Thus the problem is governed by three non-dimensional parameters: p, e and 6,. To 
proceed further we have to presume some kind of balance between them. We shall 
study motions with alongshore scale L much larger than the mean current cross-shore 
scale d,  presume the balance 

and consider p to be 0(1), at least for a while, to have a single ‘slow’ spatial scale. 
Thus, there exists a natural separation of scales in the problem, which prompts one 
to use the multiple-scale method, i.e. introduce a set of spatial and temporal variables 

{ =x; x = EX; Y = (y-cct);  T = ft.  (2.13) 

First, for simplicity only, we continue to consider the mean flow profiles without 
any slow cross-shore dependence, while the depth profile depends both on ‘fast’ and 

f n = € < l  (2.12) 
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'slow' scales, i.e. 

In terms of the new variables the primary differential operators become 

h = H(t)D(X);  V = V(<) .  (2.14) 

a, = de + FaX; a, = a, ; a, = -cay + €aT. (2.15) 

Boundary conditions (2.8a, b) are now applied to the function which depends on the 
two cross-shore variables and thus should be modified to be 

(2 .16~)  
i; =O 

y y  -+0 as X + m ,  (2.16b) 

a;yVl  -+o as 5 -+a. (2 .16~)  

The nonlinear vorticity equation (2.7) plus the modified boundary conditions (2.16~-c) 
form the principal framework of our study. 

x =O 

3. Nonlinear evolution equation 
3.1. The asymptotic derivation 

According to the standard procedure (e.g. Nayfeh 1973) we look for a solution 
y ( < , X ,  Y ,  T )  of the nonlinear boundary problem (2.7), (2.16) in the form of an 
asymptotic series in powers o f f :  

a 

n= I 

To this end we substitute (3.1) into (2.7) and consider terms of the same order in E .  

At the main (first) order one obtains 

dYL[VlI = 0, (3.2) 

where L is an ordinary differential operator of the form 

(V  - c)2 
L[y] = ( V - c )  (Z)! - - (;y. = ( H ( & ) I ) '  (3.3) 

and a prime designates the derivative with respect to <. We are looking for wave- 
like solutions propagating in the alongshore direction, which implies that the stream 
function cannot be constant with respect to Y.  So instead of (3.2) we have from the 
first-order approximation 

This equation with modified boundary conditions determines the boundary value 
problem for the function ~1 and the appropriate eigenvalue c. Equation (3.4) is 
readily integrable, its two independent solutions being 

L[y11 = 0. (3.4) 
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where the functions + = + ( X ,  Y )  and A = A( T ,  Y )  are introduced to separate the 
temporal and ‘slow’ cross-shore dependence of the solution, while the notation (f * g) 
designates a convolution of two functions with respect to the alongshore coordinate: 

+-m 

( f * g ) = /  f ( X , Y ’ ) g ( T , Y  -Y’)dY’. 
--m 

The second fundamental solution ~ 1 2 )  diverges as f tends to infinity and cannot 
satisfy (2.16~) (as dYA(*) does not equal zero identically). Applying (2.16~) to the first 
solution we find the celerity of the vorticity wave: 

c = vlt=o = 0 (3.7) 

as well as the constraint on the slowly varying part of the solution + ( X ,  Y ) :  

+(X,Y)-+O as X - + m .  (3.8) 

The result (3.7) indicates that vorticity waves within the frame of our adopted 
scaling are slow-evolving, i.e. they are steady at the main-order approximation and 
their evolution occurs on the ‘slow’ timescale specified by the next-order effects of 
nonlinearity and dispersion. 

At the second order in E ,  (2.7) together with the results of the first order yields an 
inhomogeneous differential equation for the second-order correction y2 to the stream 
function with the right-hand side expressed in terms of the first-order solutions: 

(3.9) 

Integrating (3.9) twice with respect to 5 and again using (2.16b,c) one readily gets 

V’ 
H 

“ H ( i )  1) d[+(+*A)(+*Ay)D-’-. (3.10) 

Here H ,  = lim H ( f ) ,  the slowly varying part of the depth profile should not be zero 

anywhere and the integral in (3.10) should exist. This last condition specifies the 
class of mean flows and fast-varying depth cross-shore dependencies to which our 
approach could be applied. 

In turn (2.16~) when applied to (3.10) leads to an equality valid at the coast f = 0: 

t-, 

V ,  H V’ 
(+*A+- , (+*  * A y ) + D - l - ( + * A ) ( + * A r )  =o.  

Hcc v H (3.11) 

We suppose that the depth and the mean current velocity derivative either both do 
not equal zero at the coast, i.e. at f = 0, or both equal zero simultaneously thus 
requiring the nearshore background vorticity field to have no singularities or zeros, 
which seems to be quite reasonable. So the quotient V ’ / H  at < = 0 should be 
regarded as the limit when < tends to zero, that is, if both I/’ and H equal zero at 
the coast 

(3.12) 

To determine the solution dependence on the slow cross-shore variable we have 
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to explore the next (third-order) approximation. As is common for the multiple- 
scale method, in this approximation one gets again an inhomogeneous differential 
equation with the same homogeneous part and the right-hand side containing both 
secular and non-secular terms. Secularity in this context means non-integrablilty of 
the corresponding terms with respect to the fast cross-shore variable. Therefore for 
the third-order term to be regular, the secular terms must equal zero identically. This 
requirement together with (3.8) yields the boundary problem for the slowly varying 
function 4 ( X ,  Y ) :  

( ($) * A )  + ;(4 * AY Y )  = 0, (3 .13~)  

4 ( X , Y ) - + O  at X - t m .  (3.13 b)  
It is convenient now to present the first-order stream function y1 in the Fourier form 

(3.14) yl = V 4k(X)Ak(  T )  exp{ -ik Y } dk 1: 
and to define the Fourier amplitude Ak( T )  so that 

= 4k(o)Ak(T).  (3.15) 

Eventually, after substituting (3.14) into (3.11), (3.13) and performing direct and 
inverse Fourier transforms of these equalities, one obtains the nonlinear evolution 
equation governing the dynamics of weakly nonlinear, weakly dispersive vorticity 
waves (the tilde sign is omitted) 

where the pseudo-differential operator G Lf] is prescribed by the slow cross-shore 
variation of the depth: 

f(Y’)exp{ik(Y - Y’)} dkdY’ +m d X 4 k  

GL~I  = JL, 
and 4 k ( X )  is the solution of the following boundary problem: 

(3.17) 

4 k ( X ) + 0  as X -00. (3.18 b)  
The separation of the depth cross-shore dependence into ‘fast’ and ‘slow’ parts was 
performed so that D ( 0 )  = 1. 

3.2. A critical layer problem 

The above theory has an apparent shortcoming. The derived asymptotic solution is 
not uniformly convergent near the coast because the value of the alongshore velocity 
perturbation there becomes comparable with that of the mean current. Moreover, the 
second- and third-order terms in (3.1) become singular at the point < = 0. Evidently, 
there exists a critical layer of width O(e)  near the coast where the vorticity wave phase 
speed coincides with that of the mean current (according to (3.7)). Inside the critical 
layer (3.1) is not valid any more since the motion seems to be strongly nonlinear and 
the viscous effects are likely to play an important role. However, there is a remarkable 
fact that allows us to overcome this difficulty. Namely, to O ( E )  the critical layer does 
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not influence the dynamics of vorticity waves outside it. Therefore, the nonlinear 
dynamics of vorticity waves outside the critical layer is governed by (3.16). This fact 
can be proved by setting 

, Ip = € 2 @ ,  V = €V’Z + O ( E )  (3.19) 

and calculating the main-order terms of the inner expansion of the solution (3.9, 
(3.10). We easily get (for H(O), V’(0) # 0)  

8 + V’AZ + d,’dTA + s$A2 - rG[A] + O(eIn6). (3.20) 

The boundary condition then leads to (3.16) as the O(elne) term tends to zero as 
E + 0. Finding a solution inside the critical layer represents a much more complicated 
problem and is beyond the scope of the present paper. 

A similar result holds when both V’(0) and H ( 0 )  equal zero. A simple consideration 
indicates that in this case the critical layer width is O(e’I2) and therefore we introduce 
new inner variables 

- i “  z = -  
E 

Ip = €26, v = E ;  V”Z2 + O(E) .  (3.21) 

The main-order terms of the solution inner expansion in the vicinity of the critical 
layer are 

6 + ; V ” A Z ~  + ~ F ’ ~ T A  + S ~ A ~  - &[A] + 0 ( e 1 / ~ ) ,  (3.22) 
the boundary condition at E = 0 once again leading to (3.16) with new coefficients 

(3.23) 

3.3. ‘Short-wave’ and ‘long-wave’ asymptotics 
Thus we have derived a class of nonlinear evolution equations (3.16) describing 
spatially temporal ( Y ,  T )  dynamics of weakly nonlinear, weakly dispersive vorticity 
waves. The dependence on the cross-shore coordinate is given by the explicit expres- 
sion (3.5) (the ‘fast’ part) and the boundary-value problem (3.18) (the ‘slow’ part). The 
coefficients in the equation are determined by bound values of ‘fast’ dependencies of 
the current and depth, while a slow depth dependence on the cross-shore coordinate 
is responsible for the specific dispersion. Different depth profiles outside a narrow 
coastal zone lead to very different forms of the operator G kernel and therefore of the 
dispersion law. Nevertheless despite a great variety of possible kernels of G there is a 
certain, not obvious, universality in the properties of all the variety of the nonlinear 
evolution equations belonging to this class. 

We recall that a non-dimensional parameter p, characterizing the ratio of the 
alongshore scale L to the cross-shore ‘slow’ scale dslow 

(3.24) p = -  

was introduced above and taken to be of order unity when setting out the asymptotic 
procedure in $2. The asymptotic scheme also remains valid when this ratio is of 
a different order. It should be noted that within the adopted approach we are 
considering the evolution of wide-band wavetrains, and thus at the periphery of the 
spectral band in Fourier space necessarily have relations p >> 1 and p << 1. Thus the 
question of the asymptotics for large and small p is of true interest. 

L 
dslow 
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We will show explicitly that for any arbitrary depth profile with a scale much larger 
than a typical wavelength the dispersion closely corresponds to that involved in the 
well-known Benjamin-Ono (BO) equation (Benjamin 1967). 

Let us suppose that 
D = W X ) ,  (3.25) 

where p is a small parameter p << 1. 
Under assumption (3.25) one can look for a solution to (3.18) in the form of a 

power series in p :  

d)k(X) = 4Ok(X) + &lk(X) + .... (3.26) 

Taking into account that under assumption (3.25) the depth cross-shore derivative 
becomes dxD = pD’ and substituting (3.26) into (3.18a), one easily gets at the main 
order in p the equation for d ) O k ( X )  

(3.27) 

The only solution of (3.27) satisfying the boundary condition at infinity is the decaying 
exponent 

+ ( X )  = exp(-Ik/X) (3.28) 

that yields the corresponding kernel of the dispersion operator (3.17) with the accuracy 

zx ln4k(X)JX=0 = +I. (3.29) 

The dispersion defined by the operator kernel (3.29) is obviously of the Benjamin-Ono 
tY Pe. 

Unfortunately, we cannot establish any general result for the opposite case of very 
long vorticity waves (so that p >> l), nevertheless the straightforward analysis of 
some particular depth cross-shore dependencies is possible and is done below. 

3.4. Particular examples 
Boundary problem (3.18) specifying the integral kernel can be solved analytically for 
some large-scale cross-shore depth dependencies. Consider two particular examples 
of this kind in more detail. 

3.4.1. Exponential profile 

of O b . )  

Let the dependence of the depth on the slow cross-shore variable be of the form 

D = exp{qX), (3.30) 

where q is a positive constant. Then the integral kernel defined by the solution of 
(3.18) becomes 

(3.31) 

The kernel (3.3 1) demonstrates explicitly an intermediate character of our equation: 

The exponential depth profile (3.30) apart from being a good illustrative example is 
said to be a good model of the East-Australian coast (see LeBlond & Mysak 1979). 
Some solutions to the evolution equation with kernel (3.3 1) are discussed below. 
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3.4.2. Power-law profile 
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Consider now the large-scale cross-shore depth dependence to be of the form 

D(X) = ( 1  + X)2m. (3.33) 

In this case (3.18~) could be resolved in terms of McDonald functions, the solution 
subject to (3.18b) being of the form 

+k(X)  = (1  + X ) m + w  m+1/2 " 1 + X)l. 

zKi(2)  = -VKv(Z) - ZK,-l(Z), 

(3.34) 

(3.35) 

Using the well-known property of McDonald functions (see Olver 1974) 

we get the dispersion kernel in the form 

(3.36) 

Small4 asymptotics of the kernel depend on the value of parameter m and lead to 
totally different dispersion types at the small-k periphery of the nonlinear wavetrain. 

For m > 1/2 by using an asymptotic expansion of the McDonald function of 
positive and real index for a small argument (see Olver 1974) we obtain 

for /kl << 1, (3.37) 
k2 

2m- 1 Q ( k )  + -~ 

which corresponds to the KdV-type dispersion. Thus both exponential and power-law 
profiles with exponent greater than unity (we will call them 'steep' hereinafter) lead 
to a nonlinear evolution equation for vorticity waves which is 'intermediate' between 
BO and KdV equations in the sense that the dispersion at the peripheries of the 
wide-band wavetrains studied here is of KdV (for p >> 1) and BO (for p << 1) types?. 

Power depth profiles with exponents equal to unity and less (we will call them 'flat') 
lead to dispersion kernels which exhibit quite different behaviour at the small-k limit 
and hence corresponding evolution equations do not tend to KdV as k tends to zero. 
First, let the power exponent m = 1/2, then from (3.36) we obtain in the small-k limit 

Q(k) --+ k21n Ikl for Ikl << 1. (3.38) 

When m is less than 1/2 we use another property of McDonald functions, that for 
real x > 0 there is a symmetry with respect to the index: K+,(X) = Kv(x) ,  and get 

(3.39) 

where T(z) is gamma-function. 

form of the small-k asymptotic of the dispersion kernel will be studied below. 

3.5. Generalization of the results for currents with two cross-shore scales 
The assumption made earlier of the mean current not having a slow space scale greatly 
simplifies the study of vorticity wave nonlinear dynamics, especially the analysis of 
particular models. However, most oceanic currents do possess different cross-shore 

t We note that the so-called 'intermediate long-wave equation' first derived by Joseph (1977) 
does not belong to the class (3.16). 

Some properties of the steady solitary solutions of (3.16) implied by the particular 



Dynamics of vorticity waves 193 

scales, so taking this fact into account is important. Let us presume that the current 
velocity as well as the depth depend on both ‘fast’ and ‘slow’ scales, that is, 

h = H ( < ) D ( X ) ,  V = V ( < , X ) .  (3.40) 

Performing the necessary calculations is a bit more tedious than in the previous case 
but the final results for phase speed and slow-time evolution do not differ much: 

c = V(O), (3.41) 

with the same dispersion operator (3.17). The difference lies in the boundary problem 
specifying the operator G kernel. It becomes 

(3.43a) 

d)k(X) + O  as X -+ co, (3.43b) 
where now a prime designates the derivative with respect to X and 

V, = V ( x , X ) .  

Evidently, to get explicit solutions and corresponding operator kernels from (3.43) is 
much more difficult than from (3.18), which was the prime reason for getting rid of 
the slow-scale velocity dependence of the mean flow. The main justification of doing 
so is that we do not expect qualitative differences compared to the much simpler case 
analysed above. 

4. Steady solitary-wave solutions 
As shown above, the nonlinear evolution equation (3.16) with the dispersion op- 

erator generated by (3.18) represents an intermediate case between BO and KdV 
equations for the ‘steep’ large-scale cross-shore depth profile. The most important 
solutions to both BO and KdV equations playing the key role in the evolution of a 
wide class of initial conditions are steady solitary waves, i.e. localized perturbations 
of a permanent form propagating with a constant speed. One is tempted to inves- 
tigate whether (3.16) possesses steady solutions of a solitary-wave type and, if yes, 
what common features these solutions have and how the specific dispersion created 
by a given depth profile is revealed in the solution. Here we shall investigate these 
questions both analytically and numerically. 

Let us look for a steady solution of (3.16) in the form 

A ( Y ,  T )  = A ( Y  - U T ) ,  (4.1) 

where U is the constant speed of a solitary wave. After substituting (4.1) into (3.16) 
and integrating with respect to q = Y - U T  we get the nonlinear equation for the 
alongshore dependence of the steady wave amplitude in the frame of reference moving 
with constant speed U :  

where GLf] is the pseudo-differential operator (3.17). We recall that r and s are 
positive constant coefficients, which without loss of generality can be put equal to, 
say, unity by means of a renormalization. 

UA + rG[A] - sfA2 = 0, (4.2) 
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To solve (4.2) analytically is by no means easy even for the simplest forms of 

the dispersion operator G :  at least we are not aware of any analytical solutions 
of equations of this type apart from the already well-known BO, KdV and Joseph 
equations. Thus one is forced to treat this problem numerically, although some 
important asymptotic properties of the solutions can be established analytically. 

For the numerical treatment we used the program kindly provided to us by Y. A. 
Stepanyants and modified especially for our problem by S. Y. Annenkov. In its turn 
it is based on an idea for a numerical algorithm developed by V. I. Petviashvilli (see 
e.g. Petviashvilli & Pokhotelov 1992 for the numerical search of solitary solutions in 
a quite different context). This approach proved to be best suited to solving equations 
with a power-law nonlinearity and an arbitrary dispersion. Below we sketch the main 
points of the procedure. 

First, performing a Fourier transform of (4.2) yields 

(U  + rQ(k))A = s i i 2 ,  (4.3) 

where Q(k) is the kernel of the dispersion operator G : Q(k) = dx In (bk at X = 0, and 
the tilde denotes the Fourier components of the functions. 

As the derivative of the large-scale cross-shore-dependent part of the streamfunction 
4 k  at point X = 0 is always negative for a ‘steep’ profile the kernel Q(k) is also 
negative for all wavenumbers. This fact together with the right-hand side of (4.3) 
being definitely positive makes one conclude that U < 0 and therefore 2 < 0 ,  VY. 
So the steady solitary waves under consideration are always moving upstream and 
have negative amplitude. Rescaling the wavenumber and the amplitude of the 
streamfunction 

we get a simpler non-dimensional equation in terms of B : 
B(1 + IQ(K)l) = p, 

where the new renormalized kernel Q(K) 

Q ( K )  = ( p  - ( p 2  + 4K2)li2) 

(4.5) 

(4.6) 

depends upon only one non-dimensional parameter, p = qr / (UI .  Now the function B 
can be found from (4.5) through the iteration scheme 

where a multiplier 

is used to stabilize the convergence of the iteration procedure. It is easy to see that 
(4.8) equals unity when computed for the exact solution of (4.6). 

Numerical computations were performed for the equation with the dispersion 
kernel (3.3 1) (corresponding to the exponential depth dependence) until the difference 
between the multiplier and unity became smaller than lop4. After the condition 
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FIGURE 2. Soliton solutions B ( q )  us the scale p-’ of the exponential continental slope. 

11 - MI < was fulfilled the iteration process was stopped. Each time, after 20-30 
iterations the process converged to the universal solution regardless of the specific 
form of the initial amplitude distribution taken as the starting function Bo. 

The resulting solutions depending on the non-dimensional shelf-steepness scale 
p are plotted in figure 2. Unfortunately no explicit relationship between the size, 
velocity and amplitude of the solitary-wave solutions of (3.16) was found similar to 
the well-known ones for the KdV and BO equations. Still one can easily see from the 
plot that the solitons of the BO and KdV equations represent the limiting cases for 
those of (4.2) when the parameter p is changing from zero to infinity. Moreover, the 
periphery of all computed solitary waves, the ‘tails’, look close to the KdV solitons, 
a manifestation of the universal asymptotic ‘intermediate’ properties of the evolution 
equation discussed above. The latter fact will be shown analytically below for the 
whole class of evolution equations with dispersion determined by the ‘steep’ depth 
profiles. 

From the asymptotic analysis of the dispersion operator kernel one has to conclude 
that (3.16) represents an intermediate case between BO and KdV equations for the 
‘steep’ depth profiles. Moreover, essential information can be extracted from the 
asymptotic features of the dispersion kernel Q(k)  determined by (3.18) in the limit of 
small k ,  concerning the behaviour of the steady solitary solution A(y) at large values 
of IyI. We claim that the asymptotics of A(y) at large values of 1 ~ 1  coincide with 
the KdV soliton asymptotics, i.e. tails of the solitary wave decay exponentially. To 
prove this statement consider (4.3) in Fourier space. As shown above, in the limit 
of k + 0 an arbitrary dispersion kernel Q ( k )  turns out to be a KdV kernel, namely 
const * k 2 ,  the constant being equal to -q-’ for the kernel (3.31) and to -(2m - l ) - I  
for the kernel (3.37). A Fourier transform of the square of the function represents a 
convolution 

+s 

A,&, dK. (4.9) 
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The convolution (4.9) can be approximated in the small-k limit by the value (A2)0 

with error O(k2)  due to the symmetry of the solution. Thus in this limit the solution 
of the nonlinear integral equation (4.3) is 

(4.10) 

One can recognize in (4.10) the small-k asymptotics of the Fourier transform of a 
KdV soliton or check this directly by performing the corresponding inverse Fourier 
transform, which yields the result claimed above : 

A - exP(--l?l/y), (4 .11~)  

where 

for exponential depth 
2 

? I =  (4.11h) 
\ r 

for ‘steep’ power depth . I (2m-  1)lul 
This result could also be directly seen from the fact that in the small-k limit (4.5) 
becomes the stationary KdV equation. The result is quite natural as the behaviour of 
a localized smooth function at large values of its argument is determined by the form 
of its spectrum at small k only, which can be easily extracted from the Fourier form 
of the equation. Thus we have proved the universal character of exponential decay 
of all solitary-wave solutions for the ‘steep’ depth dependence. 

The fact of exponential decay just established is of prime importance. In particular, 
interactions among solitary waves, in fact the solution to a non-steady problem for 
a wide class of initial data, can often be described as a specific interaction between 
the particles, the main features of the interaction being entirely determined by the 
behaviour of their ‘tails’ (e.g. Gorshkov & Ostrovsky 1981). Precise knowledge of the 
tail asymptotics could allow one to develop a procedure for field data processing to 
extract these patterns from the noisy records. 

5. Effect of the Earth’s rotation on the vorticity wave dynamics 
Wave-like motions considered to be vorticity waves have characteristic frequencies 

much higher than the Coriolis parameter f determining the frequency scale of the 
continental shelf waves. It is this fact that permits one to separate these two classes 
of waves in the coastal zone that are similar to each other in many other aspects. 
Mathematically we separate them by assuming the Coriolis terms in the full shallow- 
water equations to be negligibly small in comparison with the inertial terms involving 
the mean alongshore current. So the Earth’s rotation does not affect the linear 
dynamics of vorticity waves. But (2.7) includes both linear and nonlinear terms on 
the right-hand side. For small-amplitude vorticity waves these nonlinear terms are 
also small and thus might be comparable with the omitted Coriolis terms. 

Consider this effect in detail. If retained, the Coriolis term in (2.7) would be of the 
form 

Coriolis term = -f- 

where f is the Coriolis parameter, d and Vo are the mean current cross-shore scale 
and velocity respectively. If the coefficient fdV;’ is of the same order, O(e),  as the 
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velocity perturbation magnitude, the term (5.1) does not influence the linear dynamics 
of vorticity waves but is of the same order as the nonlinear inertial terms and so does 
affect the nonlinear dynamics. 

Assume that 

where F is a constant of O(  1) and the small parameter E was defined earlier. Taking 
into account (5.2) and returning to our notation of (2.13)-(2.15) we obtain instead of 
(2.7) an equation governing the nonlinear dynamics of vorticity waves in a 'slowly' 
rotating fluid: 

As the Coriolis force does not affect the linear vorticity wave dynamics, the first-order 
approximation represents an identity. But at the second order the result slightly differs 
from (3.9) and has the form 

- ($)'o, * AY) + D-' (E H ( T ) ' ) ' ( 4 * A ) ( 4 * A y ) .  V H  (5.4) 

Considering (5.4) as an ordinary differential equation with 5 as the independent 
variable we integrate it, the solution subject to (2.16b,c) being 

The third-order approximation in powers of f for (5.3) includes as in Q 3 both secular 
and non-secular terms, so the requirement of solution regularity yields the necessary 
equation for the proper slow cross-shore dependence. Thus the task is accomplished 
by the same Fourier transformation procedure as when deriving (3.16)-(3.18) to yield 
the nonlinear evolution equation for a long, finite-amplitude vorticity waves in a 
slowly rotating fluid: 

I &A + sAdyA - rG[dyA]  = -f *dyA, 

i 
where GLfJ is pseudo-differential operator of the type (3.17). Equation (5.6) reduces 
by a Galilean transform to the same form as in a non-rotating fluid (see (3.16)) with 
one essential difference: the kernel of the dispersion operator is now determined by a 
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modified boundary problem (cf. (3.17)-( 3.18)) 
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(5.7a) 

& -+0 as X + m .  (5.7b) 
As one can easily see ( 5 . 7 ~ )  exactly corresponds to the equation governing continental- 
shelf wave dynamics, the magnitude of the mean alongshore current velocity in the 
deep ocean playing the role of the wave phase speed. 

Thus the effect of a relatively weak Coriolis force on the vorticity wave nonlinear 
dynamics manifests itself in two ways: first and most important, it modifies their 
dispersion through the change in the operator G kernel; second, it adds a constant 
of order e to the phase velocity in the long-wave limit. Note that the latter appears 
only when a ‘fast’ depth variability is present, while the modification of the integral 
kernel is prescribed by a ‘slow’ depth cross-shore dependence only. The most striking 
phenomenon caused by the Earth’s rotation is the linear resonance between the 
vorticity and shelf waves that occurs at some special depth profiles and mean current 
velocity magnitudes. Its essence can be ascertained as follows. A solution of (3.18) 
evidently cannot be zero at X = 0 for any depth profile, in contrast to the solution 
of (5.7). Indeed, consider the boundary value problem for continental-shelf waves 
propagating alongshore in a coastal zone with the same cross-shore depth dependence 
D(X) in the absence of any mean current: 

4,l = 0, x=o 

( 5 . 8 ~ )  

(5.8b) 

&-+0 as X-+co .  ( 5 . 8 ~ )  

Suppose further that this problem has eigensolutions corresponding to continental- 
shelf waves propagating alongshore with the phase speed c, = c , (k)  and having 
cross-shore eigenfunctions (p,(X). If for a wavenumber k = k,  the phase speed of 
a continental-shelf wave mode is the same as V, from (5.7) then the corresponding 
eigenfunction 4,  of (5 .8~-c)  is identical to the solution & of ( 5 . 7 ~ ) .  But because of 
(5%) 4 k  turns out to be zero at the point X = 0 and, its derivative not necessarily 
being zero, the integral kernel, as one can easily see, becomes infinite at the point 
k = k .  and the dispersion operator G becomes singular. The equality of a continental- 
shelf wave-mode phase speed and the mean current velocity at the deep ocean at 
some wavenumber k .  value means the matching of the phase speeds of a long 
vorticity wave and a particular continental-shelf wave mode (the Doppler shift must 
be taken into account). As is common for linear resonance problems a special 
although straightforward analysis should be carried out in the neighbourhood of the 
‘intersection’ point (see e.g. Craik 1985). The linear interaction of resonant modes 
results in dispersion enhancement and splitting of the dispersion curves which, in turn, 
leads either to the so-called ‘change of identities’ or to linear instability, depending 
on the signs of the energies of the interacting waves. The analysis for some model 
depth cross-shore profiles permitting the analytic solution of ( 5 . 8 ~ )  did not exhibit 
any linear instability though the possibility of its existence still remains. This strong 
linear interaction and dispersion enhancement results in the fact that the dispersion 
operator G becomes singular and our asymptotic procedure as well as (5.6) lose 
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their validity. Another result of the linear resonance is likely to be the radiation of 
resonant continental-shelf waves by the running vorticity waves and therefore their 
damping through a mechanism similar to the Landau damping in plasmas. However, 
the problem of the vorticity wave nonlinear dynamics in the nearshore is principally 
two-dimensional and as the continental-shelf waves phase speed is bounded from 
above the process of linear interaction which breaks the proposed asymptotic scheme 
does not occur for a sufficiently strong mean flow (such that inequality c,,, < V,  
holds for all possible continental-shelf wave wavenumber values). This being the case, 
(5.6) is valid and the dispersion operator G is regular. 

6. Resonant forcing by coastline inhomogeneity 
Until now throughout the paper we supposed the coastline to be straight. This 

idealization, while giving an obvious gain in simplicity and clarity of consideration, 
at the same time narrows considerably the applicability of the approach to realistic 
situations. Moreover some qualitative effects are lost. Fortunately the effect of 
coastline inhomogeneity can be easily taken into account within the framework of 
the approach developed if the inhomogeneity were small enough and varied in the 
alongshore direction on a scale comparable with the typical wavelength L. The study 
of the generation of vorticity waves due to this effect is the subject of the present 9. 

To make our assumptions on the inhomogeneity features explicit, let us define a 
coastline s = uo(y) in the same Cartesian frame (x,y) in the form 

Y = X O ( Y )  ~ Q b f ,  (6.1) 

where a << 1 is a small parameter characterizing the magnitude of the coastline 
departure from the straight line x = 0. We recall that ( 2 . 8 ~ )  requires the mass 
flux normal to the coast to be zero. For the long vorticity waves considered above 
(which have zero phase speed at the main order in F and all the scaling and notation 
preserved) this yields 

( W Y  + ~ Q Y H V + ~ Q Y Y ’ )  = O  at 5 = a Q ( Y )  = 0. (6.2) 

As the parameter c( is presumed to be small, (6.2) can be expanded in a Taylor series 
with respect to aQ in the vicinity of the line ( = 0. The calculation results in (at 
i‘ = 0) 

The boundary condition (6.3) should be used in the nonlinear boundary value problem 
(2.16), (2.7) instead of the original condition on the straight coastline. To proceed 
further one should assume some balance between the parameters cn and E .  Under 
the earlier assumption V ( 0 )  = 0 the second term on the left-hand side of (6.3) 
disappears and we have to suppose the balance cn = F.  Thus the effect of coastline 
inhomogeneity on vorticity waves is weaker than on resonant continental-shelf waves 
where the balance is x = c2 (Grimshaw 1987). On substituting this scaling and the 
streamfunction in the asymptotic form (3.1) into (6.3) we get at the main (first and 
second) orders in F 

W l Y  (i-o = 0, ( 6 . 4 ~ )  

W ~ Y  = --; ( Q 2 ) ,  HV’ - ( Q y ; ) ,  at 5 = 0. (6.4b) 
The boundary condition ( 6 . 4 ~ ~ )  applied to (3.5) yields once again (3.7), (3.8) ensuring 
that the weakly dispersive vorticity waves remain resonant with the coast when the 

1 ~ 1 y  + r Q y H V  + xQy& + ~ Q y y ) ’  + a’QQY(HV)’ = 0 ( a 3 ) .  (6.3) 
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mean current speed at the coast equals zero. Thus the procedure we used is valid. 
Then we can apply (6.4b) to the first-order nonlinear solution (3.10) to obtain instead 
of (3.16) a forced nonlinear evolution equation for long, finite-amplitude vorticity 
waves : 

I &A + sA&A - rG[&A] + V’/;=,(QA)y + 9 = 0, 

9 ( Y )  = ( ; Q 2 ) ,  HV’ , 
(LO 

which differs from (3.16) in the presence of the forcing terms. We stress that Glf] is 
again the pseudo-differential operator (3.17) determined by the solution of the same 
boundary problem (3.18). 

If both H ( 0 )  and V’(0) equal zero the terms of order a in (6.3) are also zero and 
one has to expand (6.2) to the next order in a. Finally we get instead of (6.3) 

1 4 3  
W Y  + p Q QY (HV)”’ + i a 2 Q 2 ~ ;  + a 2 ~ ~ y W ”  = 0 (4,  

Now we have to assume the balance a = c’’~. This immediately leads to the modified 
‘forced’ evolution equation instead of (6.5) : 

Thus we have shown that even a comparatively small inhomogeneity of the coastline 
provides an effective mechanism of vorticity wave generation, the process and vorticity 
wave nonlinear dynamics being governed by (6.5) or (6.7). The same mechanism of 
vorticity wave resonant forcing occurs owing to the alongshore non-uniformity of 
the bottom and also to the mean wind stress, if present. The only difference lies in 
the specific expressions for the forcing term 3, their derivation within the asymptotic 
procedure developed being straightforward. This phenomenon is quite similar to 
continental-shelf wave generation by the same forces considered by Grimshaw (1987) 
though the effective forcing of vorticity waves due to zero mean current at the shore 
requires stronger inhomogeneity of the coastline or the bottom than that of resonant 
continental-shelf waves. 

It is beyond the scope of the present work to deduce immediate implications of 
the derived equation. The study of the forced nonlinear evolution equations has 
become a subject of increasing interest in recent years; the advances in this area are 
mostly related with the series of works by Grimshaw (see e.g. Grimshaw, Pelinovsky 
& Xian 1994) and up to now have been mainly concerned with the forced KdV 
equation. At present our forced equation just provides a promising framework for 
further investigations. 

7. Discussion 
First we briefly summarize the main results of our study and discuss the key 

assumptions, limitations and perspectives of the approaches developed. 
The main aim of the paper was to draw attention to a new (in the context of 

geophysical fluid dynamics) type of wave motions and to develop a relatively simple 
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mathematical model describing their basic properties. These motions are specific 
vorticity waves, expected to occur in the coastal zone and distinct in scales and 
properties from the already-known continental-shelf waves and shear or vorticity 
waves of Oltman-Shay et al. 1989. 

From the observational point of view vorticity waves manifest themselves mainly as 
variations of an alongshore velocity of the mean currents. Typical periods are a few 
hours, whereas typical spatial scales exceed greatly the cross-shore scale of the basic 
current and can be in the range from a few dozens to a hundred kilometres. We are 
unaware of any field observations where these motions have been identified. There 
are some practical difficulties in detecting these motions by traditional oceanographic 
means as measurements made at one point do not allow one to distinguish vorticity 
waves from other types of motions (first of all, internal waves) belonging to the same 
frequency range. To select vorticity waves for certain one needs a spatial array of 
sensors with a base of a hundred kilometres located along the periphery of a suitable 
current. However fast progress in remote sensing techniques promises to make the 
problem of detecting vorticity waves easier. We hope that the mathematical model 
developed above will help in identifying these motions. 

The model reduces the description of weakly nonlinear vorticity wave dynamics 
to a single one-dimensional evolution equation. This gives a substantial gain in 
simplicity: the new evolution equation is obviously much more simple than the original 
two-dimensional nonlinear boundary problem. The equation is of the generalized 
Benjamin-Ono type, the pseudo-differential dispersion operator being specific for 
each combination of bottom and current profiles. The derived equations form a 
wide new class and have an important common property: they all tend to the BO 
limit as the wave scale becomes short in comparison to the shelf-slope variation 
characteristic scale. For a family of model profiles the equations are intermediate 
between BO and KdV equations. Their solitary-wave solutions for various depth 
profiles decay exponentially. It is worth mentioning that the latter fact allows one to 
apply the previously developed specific perturbation technique in order to describe 
the interaction among the solitary waves despite not knowing precisely their shape. 
We note that a special study of the solutions and properties of these equations is still 
to be done; it was not among the prime priorities of this work. 

We would like to draw attention to the point that within the framework of our 
approach the generation of vorticity waves by a coastline inhomogeneity or/and 
alongshore depth variations is naturally described by the forced evolution equations 
and that this mechanism of generation is rather effective and robust even for small 
inhomogeneities of the coastline or bottom profile. It holds even when viscous effects 
are important and aEZ vorticity wave modes are decaying. 

All the above-mentioned results were derived using the following key assumptions : 
(i) the perturbations of the currents are weakly nonlinear waves; 
(ii) vorticity waves are long in comparison with the cross-current typical scale; 

(iii) the basic current is characterized by a monotonic profile of potential vorticity ; 
(iv) viscous effects are neglected. 

How important are they? 
The first two assumptions are unavoidable when describing vorticity wave dynamics 

via nonlinear evolution equations. Only long-wave perturbations persist for sufficiently 
long times and could be treated as waves. 

The third assumption is necessary to ensure the stability of the basic current and 
the absence of discrete spectrum modes in the linearized inviscid boundary value 
problem. It is this assumption that allows us to reduce the description of the 
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dynamics of a weakly nonlinear wave field to the description of the evolution of a 
single ‘quasi-mode’ ; it should also be noted that under this assumption the long-wave 
perturbations of the basic flow dominate the weakly nonlinear regime. Thus the 
evolution equation describes the most important range of the vorticity wave field. 
If we were to remove this restriction and try to keep the approach based on the 
evolution equations, we would face a number of questions, some of which could 
be resolved. First we note that the evolution equation holds, but now we cannot 
claim that it describes the most important part of the field variability. The range of 
scales with wavelengths of order of the cross-current typical scale is most likely to be 
dominant and therefore, as a rule, to be the most interesting. For the perturbations of 
these scales only envelope-type equations could be applied. However interest depends 
entirely on the physical context, for example to study the role of vorticity waves in 
the sedimentation processes one should focus attention on waves having almost zero 
velocity with respect to the shore, i.e. the waves governed by the derived evolution 
equations. 

For the situations under consideration the bottom friction, the main viscous effect, 
could be easily incorporated into the evolution equation provided it is of the same 
order as the nonlinearity and the dispersion. Although we do not expect new 
qualitative effects due to bottom friction, the quantitative differences might be quite 
noticeable and the role of this effect in vorticity wave nonlinear dynamics should be 
carefully examined. 

The vorticity waves are of undoubted interest in themselves. One of the features 
which makes them especially interesting is their nearly zero, with respect to the shore, 
phase and group velocity. One may expect them to have an important role in the 
process of sedimentation even when their contribution in the nearshore variability is 
not dominant. We consider studies of the mechanisms of vorticity wave contribution 
to sedimentation to be the most promising direction of further research in this field. 
Another characteristic of vorticity waves that is worth mentioning is related to the 
strongly nonlinear motions they generate in the vicinity of the critical layer, i.e. in the 
immediate vicinity of the shore. Although these strongly nonlinear vortical motions 
cannot be described by our model (we just have shown that they do not affect 
the waves at the leading order) we can predict some essential parameters of these 
induced vortical motions. Such vortices, being localized in the immediate vicinity 
of the shoreline, could contribute fundamentally to the processes of mixing and 
diffusion in this important zone. The situation somewhat resembles that of Pedley 
& Stephanoff (1985) where intense vortices, which were detected experimentally in 
the near-wall boundary layers in Poiseuille flow in a channel, were not described 
by the theory. However vorticity waves described by their linear model provided 
some characteristics of the induced vortices. A more distant analogy would be 
water waves with breakers. Although unable to describe the breakers (vortices) we 
nevertheless know that they are attached to the crests and on this basis can predict 
their propagation. 
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